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Thermodynamic behaviors of a binary monolayer of Ising dipolar particles are studied using particle dy-
namics simulation, varying the relative intensity between the upward and downward dipole moments. The
orientational order of the solid phase changes from tetragonal to hexagonal as the moment ratio increases. On
the basis of the arguments of the candidates for ground state structures, the energy of the structures are well
estimated. The transition point is also determined theoretically, which is consistent with the value obtained
from the simulation results. Critical condensation is also studied. While the system whose moment ratio is
unity does not exhibit the gas-liquid critical condensation, the transition appears as the moment ratio changes.
The local structure of the liquid phase is found to be characterized by the ground state of the tetramer. The
above-mentioned results imply that the gas-liquid critical point comes close to the melting transition point as
the local structure of the liquid phase becomes closer to the structure of the solid phase, and therefore, the
critical condensation is vanished.
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I. INTRODUCTION

Polar molecules �1–14� and/or multicomponent particle
systems �13,15–21� often show a rich variety of ground-state
structures and thermal phases compared with single compo-
nent, simple interaction particle systems. Among such sys-
tems, behaviors of the two- and three-dimensional dipolar
spheres and the Stockmayer fluid have been intensively in-
vestigated recently �3–14�. Not only that the ground state of
dipolar spheres have a wide variety of structures depending
on particle density �10,12�, it also shows critical condensa-
tion that is much different from that of a simple fluid
�4,5,7,8,11�. Dipolar spheres tend to contact with head-to-tail
alignment because of anisotropic pair interaction and then
aggregate into elongated polymerlike chains as temperature
decreases. Thus, normal gas-liquid condensation is thought
to vanish from the phase diagram of this system �6,14�.

Even without anisotropic interaction, a binary mixture of
dipolar particles also shows interesting thermodynamic fea-
tures. A monolayer of dipolar particle model in which the
dipole orientation of each particle is fixed to be up or down
is named the Ising dipolar particle �IDP� model �18–22�,
mainly whose ground-state structures �13,17,18,20� and ag-
gregation dynamics have been investigated �19�. Regarding
the thermodynamics of the IDP model, we have reported in
the preceding paper that the gas-liquid critical point esti-
mated from our simulation results is lower than the solidifi-
cation temperature and the liquid phase disappears �21�. We
have observed critical clusters and found that although a
cluster as a whole consists of random configurations of par-
ticles, it is locally ordered to a characteristic tetragonal con-
figuration. With an appropriate Mayer-Mayer expansion

analysis considering such a local configuration, we have
shown that owing to the similarity of local configurations of
critical clusters with the solid order, the free energies of the
liquid and solid phases differ negligibly and solidification
occurs slightly ahead of condensation.

As the critical condensation of IDP is controlled by such a
local characteristic structure reflecting the energy minimum
of a particle configuration, the critical point may sensitively
change when the relative dipole moment between two spe-
cies changes from unity. Furthermore, the ground state may
also change from a square lattice with alternate positions of
two species. In this study the dependence of a phase diagram
on the relative dipole moment is investigated.

II. MODEL AND METHOD

The model is the same as that indicated in �21�, except for
relative dipole moment. The system consists of N Ising di-
pole particles in a square box of side length L with periodic
boundary condition. All the particles have the identical mass
m. Each particle has a spherical elastic volume of radius R
and a pointlike dipole moment at the center. The dipole mo-
ment of each particle is fixed throughout the time evolution,
and it is perpendicular to the plane of motion pointing either
upward or downward. The pair potential between the ith and
the jth particles is

��rij� = �pp�rij� +
�i� j

rij
3 , �1�

with the dipole moments �i and � j of the ith and the jth
particles, and the interparticle distance rij. The strength of
each dipole moment is either of �1 or �2�−�1 /�r, where �r
is the relative dipole moment. The parameter range of 1
��r �or ��2�� ��1�� is investigated. Hereafter, we refer to a
particle with �1 dipole moment as a �1 particle, and a par-
ticle with �2 moment as a �2 particle. The ratio of the num-
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ber of �1 particles �N1� to that of �2 particles �N2� is set to
satisfy the neutral condition,

N1�1 + N2�2 = 0, �2�

or N2 /N1=1 /�r. �pp denotes the core potential. For the ef-
ficiency of the particle dynamics simulation, a small overlap
of particles is assumed using the Hertzian contact potential

�pp�rij� = � 2
5kpp�d − rij�5/2 �rij � d� ,

0 �rij � d� ,
� �3�

with the elasticity constant kpp=400	2�0
2 /d5.5.

We perform a series of particle dynamics simulations un-
der a canonical �TNV� ensemble using the method indicated
in �23� �details are shown in �21��. Instead of V, hereafter we
use the density defined as the coverage ��N�R2 /V, and the
Boltzmann constant is set using the binding energy of two
particles as kB=2��1�2�d−3. The cutoff distance is taken to be
Rcf =8d here, where d�=2R� denotes the diameter of the par-
ticles. Most of the simulations are performed using N
=6400 particles.

III. RESULT

To obtain the phase diagram that depends on the relative
dipole moment, the structures of solid phases, the solidifica-
tion temperature, and the critical point of the gas-liquid tran-
sition are investigated.

First, the growth of a solid cluster is observed for several
relative dipole moments. Particles are randomly placed at the
beginning of each simulation, and temperature is fixed to be
T=0.032 for the simulation. We choose T=0.032 because the
system constructs metastable structures at lower temperature
�see �18�� and the solid structure may melt at higher tempera-
ture. Figure 1 shows the structures of the clusters for small
and large relative moments. At the relative moment �r=1.2,
the structure exhibits a tetragonal order with alternate posi-

tions of the species. On the other hand, the system exhibits a
hexagonal order for a larger relative moment. It is worth
noting that only particles with large dipole moments ��1�
exhibit a hexagonal order, while those with small moments
��2� do not. The reason for the occurrence of this phenom-
enon is given later.

The time evolutions of some orientational orders are stud-
ied in order to determine the structure at each relative mo-
ment. Each of the tetragonal and the hexagonal orientational
orders is observed. These orientational orders are calculated
as follows: For a neighboring particle pair whose relative
position is rij ��xij ,yij� the orientation is defined as
exp��iji�= �xij + iyij� /rij with the imaginary unit i. Then the
fourfold and sixfold orientational orders are determined as

	4 =
1

N
�i,j exp�4i�ij�
 ,

	6 =
1

N
�i,j exp�6i�ij�
 . �4�

The time evolutions of 	4 and 	6 are shown in Fig. 2. In
systems with �r�1.32, 	4 increases monotonically, while 	6
increases in 1.32
�r systems. Therefore, the transition point
between fourfold and sixfold orders is at �see Fig. 3�

�r � 1.32. �5�

Next, the melting �solidification� temperature Ts for each
�r is estimated by observing the time evolution of 	4 or 	6.
The estimated values of Ts are summarized in Table I. Here,
Ts is associated with the temperature of the tricritical point.

Finally, the critical temperature of gas-liquid condensa-
tion, Tc, is also estimated for each �r by the critical scaling
of average cluster size. In the fluid phase, the average cluster
size near the critical point should be fitted by the following
scaling form using a scaling function f as

(a) µr = 1.2 (b) µr = 1.4(b)(a)

FIG. 1. �Color online� Structures of solid clusters with �a� �r=1.2 and �b� �r=1.4 at T=0.032. Red particles �or darker color� have large
moments, and the other particles have small moments. Particles in �a� are positioned tetragonally, while those in �b� are positioned
hexagonally.
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s̄/�  �T − Tc�−�f��T − Tc�/��c − ��a� , �6�

where �Tc ,�c� is the critical point, � and a are critical expo-
nents, and f is a scaling function. Therefore, the average
cluster size measured at each temperature and density falls
onto a single curve when appropriate critical values are cho-
sen �see �21��.

Figure 4 shows the �r-T phase diagram of the IDP model.
The solidification temperature Ts decreases with �r, owing to
the increasing frustration between next-nearest particles
��1-�1�. After the order of the solid phase switches to hex-
agonal, the Ts curve exhibits another local maximum around
�r�1.9. This local maximum comes from the fact that a
perfect hexatic lattice can be formed at 1:2 concentration
��r=2� and beyond that relative dipole, a hexatic order
gradually becomes unfavorable. These features are quantita-
tively investigated in the next section.

The critical point which was hidden under the solidifica-
tion temperature becomes above Ts and a liquid phase ap-
pears as �r increases from 1. A snapshot of a typical gas-
liquid coexistence phase is shown in Fig. 5.

IV. THEORETICAL ANALYSIS

The energy of the tetragonal lattice and that of the hexatic
lattice consisting of IDPs are calculated analytically. Since
the relative number of particles is N1 /N2=1 /�r, the perfect
square lattice is constructed at �r=1, and the perfect hexatic
lattice at �r=2 �six �2 particles around a �1 particle�. In an

intermediate range �1��r�2�, both lattices should have de-
fects of �1 or �2 particles in order to form the square or
hexatic order. We perform the following analyses by assum-
ing that those defects are located randomly.

For the square lattice with the lattice constant d, the defect
ratio of �1 particles is p=1−1 /�r. Therefore, the energy per
particle is

�4 =
2

�1 − p� + 1�
i

�
j=−i+1

i
�1 − p��1�i+j� + �2�i+j+1�

�d	i2 + j2�3

=
4

1 + �r

��1�2�
d3 �

i
�

j=−i+1

i
�− 1�i+j

�	i2 + j2�3
�

− 2.643

1 + �r

��1�2�
d3 ,

�k� = ��1 − p��1 �k mod 2 = 0� ,

�2 �k mod 2 = 1� .
� �7�

The relative particle position indicated by �i , j� is explained
in Fig. 6. The summation in the equation is performed within
the cutoff length, i.e., d	i2+ j2�Rcf. The energy per particle
in a hexatic lattice is

�6 =
3

1 + 2�1 − p���i
�
j=1

j
i


�1�i+j� + �1 − p���2�i+j+1� + �1 − p���2�i+j+2�

d3	i2 + j2 − ij3

=
9�r

4�1 + �r�
��1�2�

d3 �
i

�
j=1

j
i − 1 + 3��i+j�mod 3,0

	i2 + j2 − ij3

TABLE I. The solidification �melting� temperature Ts and gas-
liquid critical point �Tc ,�c� at each relative moment are shown.

�r Ts Tc �c

1 0.0585�1� 0.05790�5� 0.275�5�
1.26 0.041�1�
1.32 0.035�1�
1.36 0.035�1�
1.5 0.037�1� 0.056�1� 0.31�1�
1.8 0.043�1� 0.053�1� 0.35�1�
2.0 0.042�1� 0.0525�10� 0.36�1�
2.2 0.040�1�
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FIG. 2. �Color online� Time
evolution of �a� fourfold and �b�
sixfold orientational orders at T
=0.032. The orientational order
switches from tetragonal to hex-
agonal at approximately �r=1.32.

FIG. 3. �Color online� Schematic drawing of �-T phase diagram
for a certain �r. From this phase diagram, Tc and Ts are obtained
�Fig. 4�.
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�
− 1.743�r

�1 + �r�
��1�2�

d3 ,

�k� = ��1 �k mod 3 = 0� ,

�1 − p���2 �k mod 3 � 0� ,
� �8�

where p�=1−�r /2 is the defect ratio of �2 particles �for
�r
2�. The summation is within d	i2+ j2− ij�Rcf.

The theoretical �4 and �6 values and the energy per par-
ticle calculated from the simulation results are shown in Fig.
7. The energy is measured at T=0.01 in the simulation �Table
II�. In the range of �r�1.3 where the system shows a tetrag-
onal order, the lattice energy calculated from the simulation
results agrees well with the analysis results. However, the

hexatic lattice of the simulation �1.32��r� has a much lower
energy than that of the analysis. The transition point is pre-
dicted to be �r�1.52, which is much higher than �r=1.32
obtained by simulation.

Observing the image in Fig. 1�b� again, we found that �2
particles are loosely packed among �1 particles, instead of
being located at the position of the perfect hexatic lattice.
Such looseness should make the distance between nearest
particles longer and reduce energetic frustrations between
�2-�2 interactions. It seems that the hexatic lattice in the
simulation has a lower energy than �6 because of this reason.

We would like to introduce another candidate of the
ground-state configuration for the hexatic lattice: We assume
that �2 particles are evenly distributed around a �1 particle,
as illustrated in Fig. 8, instead of defects of �2 particles
existing in a perfect hexatic configuration. The distance be-
tween neighboring �2-�2 particles is therefore changed from
d to
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FIG. 4. �Color online� The �r-T phase diagram of Ising dipolar
particles is shown. Curves serve as optical guides.

FIG. 5. �Color online� A snapshot of gas-liquid separation at
�r=1.32, �=0.2, and T=0.05 is shown. The largest cluster �and,
maybe, larger clusters� is a liquid droplet, and the region around it
consisting of monomers and small clusters corresponds to a gas
phase.
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FIG. 6. �Color online� Binary square and hexatic lattice showing
how the energy per particle was calculated.
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FIG. 7. �Color online� Analytical curves of energy of square
lattice with �1 defects ��4�, hexatic lattice with �2 defects ��6�, and
�1 hexatic lattice with loose packing �2 ��6�� are shown and com-
pared with the simulation results. The error bar of each plot is
within the size of the circle. For the fitting of the �4 curve, the
lattice constant is assumed to be 0.99d.
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r� = 2d sin��/�3�r�� .

Then the energy per particle �6 is replaced with

�6� = �6 +
1

2

2�1 − p��
3 − 2p�

3�−
�2

2

d3 �1 − p�� +
�2

2

r�2�
= �6 +

3�r

2�1 + �r�
�−

1

2
+

1

8�r sin3��/�3�r��
� ��1�2�

d3 ,

�9�

considering that the ratio of the number of �2 particles to the
total number of the particles is N2 /N=2�1− p�� / �3−2p��.
The �6� curve as a function of �r is shown in Fig. 7. While
there still remains a small difference from the simulation
results, it is much improved compared to the previous �6
curve. Moreover, the transition point obtained from �4 and �6�
is estimated to be �r=1.29. This value is much closer to the
value from the simulation result.

Next, the features of critical condensation and the rela-
tionship between Tc and Ts are also investigated. As in the
case of �r=1 �21�, the particles in the fluid phase near the
critical condensation may locally form a typical configura-
tion that can be well characterized by the ground-state con-
figuration of the small number of particles. To clarify this
point, the local configuration of critical clusters is observed:
The average distance between neighboring �1-�1 particles
�denoted as d++� and that of �2-�2 particles �d−−� in the
critical region are measured �Fig. 10�. The d++ and d−− values
differ as �r increases.

On the other hand, the ground-state configuration of a
four-particle cluster with two-by-two particles is rhombic as
illustrated in Fig. 9, and the energy of such a configuration is

�t =
1

2
�4�1�2

d�3 +
�1

2

A3 +
�2

2

B3� =
�1�2

2
� 4

d�3 −
1

�rA
3 −

�r

B3�
�10�

�A2 + B2 = 4d�2� ,

where d�, A, and B are the distances between �1-�2, �1-�1,
and �2-�2 particles, respectively. By calculating the local
minimum condition, ��t /�A=0, under the constant d�, the
interparticle distances of the ground state are obtained as

A =
2d�

	1 + �r
4/5 , B = 2d�	 �r

4/5

1 + �r
4/5 . �11�

As shown in Fig. 10, measured d++ and d−− show good
agreement with the theoretical curves A and B. Thus, the
typical local configuration of critical clusters is well charac-
terized by the ground-state configuration of a tetramer, such
as that in Fig. 9. Furthermore, the ground-state energy of a
tetramer in Eq. �10� is

�t =
�1�2

d�3 �4 −
�1 + �t

4/5�5/2

8�r
� , �12�

which depends much less on �r as compared with the energy
of the solid phase, �4 in Eq. �7�.

As discussed here, the typical configuration and energy of
critical clusters differ from those of a solid lattice as �r in-
creases from 1, whereas they are very similar to the long-
range order of a solid phase at �r=1. Consequently, Tc de-
viates from Ts and a liquid phase appears �see Fig. 4�.

V. SUMMARY AND DISCUSSION

Thermodynamics of an IDP model depending on �r was
investigated by particle dynamics simulation. A transition of

TABLE II. The energy per particle in a lattice at each relative
dipole is shown �measured at T=0.01�.

�r E �r E

1 −1.359�1� 1.32 −1.208�2�
1.12 −1.286�2� 1.4 −1.207�2�
1.2 −1.243�2� 1.5 −1.194�2�
1.26 −1.210�2� 1.8 −1.163�2�
1.29 −1.201�2� 2 −1.161�2�

�
FIG. 8. �Color online� As a model assumption, configurations of

neighboring �2 particles are changed such that the �2 particles are
evenly distributed around a �1 particle �showing the case for �r

=5 /3�.
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FIG. 9. �Color online� Ground-state configuration of a tetramer
at �r�1.
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FIG. 10. �Color online� The distance between neighboring par-
ticles of critical clusters and the particle configuration of a ground-
state rhombic tetramer are compared. The curves A and B are drawn
by setting d�=1.09d.
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the orientational order of a ground state from the tetragonal
lattice to the hexagonal lattice of �1 particles with loosely
packed �2 particles was observed at �r=1.32. This transition
was well reproduced theoretically by comparing the energy
of a square lattice with alternate positions of two species and
that of a �1 hexagonal lattice with loosely packed �2
particles.

The critical condensation of the �r=1 case has been dis-
cussed in �21�: In the critical temperature region, clusters
locally exhibit many tetragonal configurations of particles,
and owing to the similarity of the configurations with the
order of the solid phase, the values of Tc and Ts are very
close, and the critical condensation disappears since Ts�Tc
as illustrated in Fig. 11. On the other hand, the typical local
configuration of critical clusters that varies in the case of 1
��r is well characterized by the energy minimum configu-
ration of a four-particle cluster �rhombic configuration�. As
the configuration becomes less similar to the solid order, Tc
deviates from Ts and a liquid phase appears.

It was clarified that in a binary mixture of particles such
as the IDP model, phase transitions sensitively depend on the
energy balance between two species. Therefore, other varia-
tions in a parameter, for example, changes in the relative
condensation of two species, may also change the thermody-
namic phases. Although this study is restricted within neutral
conditions, analytical calculations of lattice energies ��4, �6,
and �6�� in Eqs. �7�–�9� are also applicable to non-neutral
conditions, by setting p=1−N1 /N2 and p�=1−N2 / �2N1�. In
the 1:1 concentration, a �1 particle in a lattice used for �6�
calculation has three �2 neighbors �and vice versa�. This
structure is very similar to the honeycomblike lattice re-
ported in �17,18,20�. Here, an interesting prediction arises:

The solid phase with a loose packing hexatic order continu-
ously changes to the honeycomblike lattice, as the relative
concentration varies to be N1 /N2→1. This is expected to be
verified by further investigation.

The analyses presented in this paper can be applicable to
other complex fluids with an anisotropic interaction and/or
multicomponent mixture where the energy sensitively
changes depending on the microscopic particle orientation or
configuration. As we have pointed out, such a system forms
a typical local configuration which is similar to the ground-
state configuration even in the fluid phase at a relatively high
temperature. And that configuration plays a dominant role in
phase transitions. Thus, it is necessary to determine the type
of structure locally formed to understand the characteristics
of transitions in such systems.
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